

FIFO

User Guide

03/2018

Hercules Microelectronics, Inc.

China

 User Guide of FIFO

 http://www.hercules-micro.com 2

Contents

Contents ..2

1 Software FIFO Introduction ..3

2 Software FIFO Block Diagram ...4

2.1 Asynchronous FIFO ... 4

2.2 Synchronous FIFO ... 4

3 Software FIFO Interface ...6

3.1 Asynchronous FIFO interface .. 6

3.2 Synchronous FIFO interface .. 8

3.3 FIFO programmed parameter list ... 10

4 Software FIFO Usage and Control ... 13

4.1 FIFO Full/Empty generation .. 13

4.2 Almost full/Almost empty generation .. 14

4.3 Programmable full/empty generation .. 15

4.3.1 Programmable Full ... 15

4.3.2 Programmable Empty ... 17

4.3.3 Data count generation .. 19

4.3.4 Handshaking interface generation ... 20

5 Hardware FIFO .. 21

5.1 Introduction .. 21

5.2 Difference between SW FIFO and HW FIFO ... 21

6 AHB interface FIFO ... 23

7 Resource usage .. 24

8 Simulating your design ... 25

9 Generated File Directory Structure ... 26

Revision History ... 28

http://www.hercules-micro.com/

 User Guide of FIFO

 http://www.hercules-micro.com 3

1 Software FIFO Introduction

This document describes the FIFO (First-in First-out) IP core, including asynchronous FIFO and synchronous

FIFO. The FIFO supports the following features:

 Support data width up to 128 bits with depth up to 1K bits;

 Support different input and output data widths;

 Support both synchronous and asynchronous FIFO;

 Support wfull/rempty status flag;

 Optional synchronous clear inputs for both read and write;

 Optional almost_full/almost_empty status flag to indicate only one more data can be written/read

before FIFO is full/empty;

 Optional prog_full/prog_empty status flag. Support 4 types of programmable full flag generation : Single

threshold constant, Single threshold with dedicated input port, Assert and negate threshold constants,

Assert and negate thresholds with dedicated input ports;

 Optional count vector(s)(wr_data_cnt and rd_data_cnt) provide visibility into number of data words

currently in the FIFO, synchronized to either clock domain;

 Four optional handshake signals (wr_ack, rd_ack, overflow, underflow) provide feedback

 (acknowledge ment or rejection) in response to write and read requests in the prior clock cycle;

 Invalid read or write requests are rejected without affecting the FIFO state. When FIFO is full, data can’t

write to FIFO anymore, the write data will be omitted. When FIFO is empty, data can’t read out anymore;

 Support AHB interface.

 Support First Word Fall Through function

 Up to 200MHz performance.

Device Support:

HME-M5, HME -M7, HME -HR3, HME _HR2, HME _M0, HME _M1

http://www.hercules-micro.com/

 User Guide of FIFO

 http://www.hercules-micro.com 4

2 Software FIFO Block Diagram

2.1 Asynchronous FIFO

Following figure shows the block diagram of asynchronous FIFO.

wclk

wrst_n

waddr raddr

FIFO
Memory

Dual Port Memory
(EMB5K)FIFO

wptr&
wfull

FIFO

rptr&
rempty

wen

wfull

ren

rclr

wdata rdata

wbin rptr

rempty

gray2bin

wclk
wclk

almost
/prog

full

almost_full

gray2bin
almost/

prog
empty

almost_empty

rclk
rclk

rclk

rrst_n

sync sync

prog_full prog_empty

prog_full_thresh
prog_full_assert
prog_full_negate

prog_empty_thresh
prog_empty_assert

prog_empty_negate

wclr

Figure 2-1 Asynchronous FIFO Block Diagram

To implement asynchronous FIFO function:

 To store the FIFO data, the dual port memory (EMB5K) are used, the number of EMB5K depends on the

data width and memory depth that user need;

 Synchronous bridge between different clock domains are used to solve the metastability issue;

 To eliminate the problem associated with synchronizing multiple changing signals on the same clock edge,

Gray counter is used. Gray codes only allow one bit to change for each clock transition.(Only one bit is

allowed to convert at each transition clock in Gray codes).

2.2 Synchronous FIFO

Following figure shows the block diagram of synchronous FIFO:

http://www.hercules-micro.com/

 User Guide of FIFO

 http://www.hercules-micro.com 5

clk

rrst_n

waddr raddr

FIFO
Memory

Dual Port Memory
(EMB5K)FIFO

wptr&
wfull

FIFO

rptr&
rempty

wen ren

rclr

wdata rdata

wbin rbin

wfull rempty

almost
/prog

full

almost/
prog

empty

clk clk

almost_full almost_empty

prog_full prog_empty

prog_full_thresh
prog_full_assert

prog_full_negate

prog_empty_thresh
prog_empty_assert
prog_empty_negate

wclr

Figure 2-2 Synchronous FIFO Block Diagram

To implement synchronous FIFO function:

Compared with asynchronous FIFO, no synchronous bridge and gray code counter are needed in synchronous

FIFO.

http://www.hercules-micro.com/

 User Guide of FIFO

 http://www.hercules-micro.com 6

3 Software FIFO Interface

3.1 Asynchronous FIFO interface

Following figure shows the interface of asynchronous FIFO.

Asynchronous
FIFO

wr_clk

wrst_n

wen

wdata

prog_full_thresh

prog_full_assert

prog_full_negate

wfull

almost_full
prog_full

wr_ack

overflow

rd_clk

rrst_n

ren

rdata

prog_empty_thresh

prog_empty_assert

prog_empty_negate

rempty

almost_empty
prog_empty

rd_ack

underflow

optional
inputs

optional
outputs

optional
inputs

optional
outputs

wr_data_cnt rd_data_cnt

wclr rclr

Figure 3-1 Asynchronous FIFO Interface

The asynchronous FIFO pin descriptions are outlined in the table below.

Table 3-1 Asynchronous FIFO pin description

Interface Name Direction Width Description

System wclk Input 1 write clock input

wrst_n Input 1 Write reset input, active low

rclk Input 1 Read clock input

rrst_n Input 1 Read reset input, active low

User

Interface

wdata Input wr_dw FIFO write data

rdata Input rd_dw FIFO read data

wen Input 1 FIFO write enable

ren Input 1 FIFO read enable

wclr Input

(optional)

1 Synchronous clear input to clear write pointer,

write related flag output, active high

rclr Input

(optional)

1 Synchronous clear input to clear read pointer, read

related flag output, active high

prog_full_thresh Input

(optional)

wr_aw Programmable Full Threshold: This signal is used to

input the

http://www.hercules-micro.com/

 User Guide of FIFO

 http://www.hercules-micro.com 7

threshold value for the assertion and de-assertion

of the

programmable full flag.

prog_empty_thresh Input

(optional)

rd_aw Programmable Empty Threshold: This signal is used

to input the

threshold value for the assertion and de-assertion

of the

programmable empty flag.

prog_full_assert Input

(optional)

wr_aw Programmable Full Threshold Assert: This signal is

used to set the upper threshold value for the

programmable full flag, which defines when the

signal is asserted.

prog_full_negate Input

(optional)

wr_aw Programmable Full Threshold Negate: This signal is

used to set the

lower threshold value for the programmable full

flag, which defines when the signal is de-asserted.

prog_empty_assert Input

(optional)

rd_aw Programmable Empty Threshold Assert: This signal

is used to set

the lower threshold value for the programmable

empty flag, which

defines when the signal is asserted

prog_empty_negate Input

(optional)

rd_aw Programmable Empty Threshold Negate: This

signal is used to set

the upper threshold value for the programmable

empty flag, which

defines when the signal is de-asserted.

wfull Output 1 FIFO full flag, active high

rempty Output 1 FIFO empty flag, active high

almost_full Output

(optional)

1 This signal indicates that only one more write can

be performed before the FIFO is full.

almost_empty Ouput

(optional)

1 this signal indicates that the FIFO is almost empty

and one word remains in the FIFO.

prog_full Output

(optional)

1 This signal is asserted when the number of words

in the FIFO is greater than or equal to the assert

threshold. It is deasserted when the number of

words in the FIFO is less than the threshold.

prog_empty Ouput

(optional)

1 This signal is asserted when the number of words

in the FIFO is less than or equal to the

programmable threshold. It is de-asserted when

the number of words in the FIFO exceeds the

programmable threshold.

wr_ack Output

(optional)

1 Write Acknowledge: This signal indicates that a

write request (wen) during the prior clock cycle

succeeded.

http://www.hercules-micro.com/

 User Guide of FIFO

 http://www.hercules-micro.com 8

rd_ack Output

(optional)

1 rd_ack: This signal indicates that valid data is

available on the output bus (rdata).

overflow Output

(optional)

1 Overflow: This signal indicates that a write request

(wen) during the prior clock cycle was rejected,

because the FIFO is full.

underflow Output

(optional)

1 Underflow: Indicates that read request (ren) during

the previous clock cycle was rejected because the

FIFO is empty.

wr_data_cnt Output

(optional)

wr_aw Indicate how many data are stored in FIFO, in write

clock domain.

rd_data_cnt Output

(optional)

rd_aw Indicate how many data are stored in FIFO, in read

clock domain.

3.2 Synchronous FIFO interface

Following figure shows the synchronous FIFO interface

Synchronous
FIFO

wen

wdata

prog_full_thresh

prog_full_assert

prog_full_negate

wfull

almost_full
prog_full

wr_ack

overflow

ren

rdata

prog_empty_thresh

prog_empty_assert

prog_empty_negate

rempty

almost_empty
prog_empty

rd_ack

underflow

optional
inputs

optional
outputs

optional
inputs

optional
outputs

clk rst_n

wr_data_cnt rd_data_cnt

wclr rclr

Figure 3-2 Synchronous FIFO Interface

The synchronous FIFO pin descriptions are outlined in the table below.

Table 3-2 Synchronous FIFO pin description

Interface Name Direction Width Description

System clk Input 1 clock input

rst_n Input 1 reset input, active low

http://www.hercules-micro.com/

 User Guide of FIFO

 http://www.hercules-micro.com 9

User

Interface

wdata Input wr_dw FIFO write data

rdata Input rd_dw FIFO read data

wen Input 1 FIFO write enable

ren Input 1 FIFO read enable

wclr Input

(optional)

1 Synchronous clear input to clear write pointer,

write related flag output, active high

rclr Input

(optional)

1 Synchronous clear input to clear read pointer, read

related flag output, active high

prog_full_thresh Input

(optional)

wr_aw Programmable Full Threshold: This signal is used to

input the

threshold value for the assertion and de-assertion

of the

programmable full flag.

prog_empty_thresh Input

(optional)

rd_aw Programmable Empty Threshold: This signal is used

to input the

threshold value for the assertion and de-assertion

of the

programmable empty flag.

prog_full_assert Input

(optional)

wr_aw Programmable Full Threshold Assert: This signal is

used to set the upper threshold value for the

programmable full flag, which defines when the

signal is asserted.

prog_full_negate Input

(optional)

wr_aw Programmable Full Threshold Negate: This signal is

used to set the

lower threshold value for the programmable full

flag, which defines when the signal is de-asserted.

prog_empty_assert Input

(optional)

rd_aw Programmable Empty Threshold Assert: This signal

is used to set

the lower threshold value for the programmable

empty flag, which

defines when the signal is asserted

prog_empty_negate Input

(optional)

rd_aw Programmable Empty Threshold Negate: This

signal is used to set

the upper threshold value for the programmable

empty flag, which

defines when the signal is de-asserted.

wfull Output 1 FIFO full flag, active high

rempty Output 1 FIFO empty flag, active high

almost_full Output

(optional)

1 This signal indicates that only one more write can

be performed before the FIFO is full.

almost_empty Ouput

(optional)

1 This signal indicates that the FIFO is almost empty

and one word remains in the FIFO.

prog_full Output

(optional)

1 This signal is asserted when the number of words

in the FIFO is greater than or equal to the assert

http://www.hercules-micro.com/

 User Guide of FIFO

 http://www.hercules-micro.com 10

threshold. It is deasserted when the number of

words in the FIFO is less than the negate threshold.

The threshold can be const, dynamic inputs, const

range or dynamic range inputs

prog_empty Ouput

(optional)

1 This signal is asserted when the number of words

in the FIFO is less than or equal to the

programmable threshold. It is de-asserted when

the number of words in the FIFO exceeds the

programmable threshold.

The threshold can be const, dynamic inputs, const

range or dynamic range inputs

rd_ack Output

(optional)

1 Rd_ack: This signal indicates that valid data is

available on the output bus (rdata).

wr_ack Output

(optional)

1 Write Acknowledge: This signal indicates that a

write request (wen) during the prior clock cycle

succeeded.

overflow Output

(optional)

1 Overflow: This signal indicates that a write request

(wen) during the prior clock cycle was rejected,

because the FIFO is full.

underflow Output

(optional)

1 Underflow: Indicates that read request (ren) during

the previous clock cycle was rejected because the

FIFO is empty.

wr_data_cnt Output

(optional)

wr_aw Indicate how many data are stored in FIFO in write

domain

rd_data_cnt Output

(optional)

rd_aw Indicate how many data are stored in FIFO in read

domain

3.3 FIFO programmed parameter list

FIFO related parameters are shown as below:

Table 3-3 FIFO parameters list

Name Type Value Description

wr_dw int >=1 Write data width

rd_dw int >=1 Read data width

wr_aw int >=4 Write address width

rd_aw Int >=4 Read address width

need_syn_wr_clr Int 1, 0 1: Synchronous clear for FIFO in

write clock domain;

0: Not synchronous clear

need_syn_rd_clr int 1, 0 1: Synchronous clear for FIFO in

write clock domain;

0: Not synchronous clear

http://www.hercules-micro.com/

 User Guide of FIFO

 http://www.hercules-micro.com 11

prog_full_type string const, dyn_single

range, dyn_range

Support 4 types of programmable

full flag generation:

const: single programmable

threshold setting through

parameter;

dyn_single: single programmable

threshold setting through

inputs(prog_full_thresh);

range: multiple programmable

threshold setting through

parameters;

dyn_range: multiple programmable

thresh setting through inputs ports

prog_empty_type String const, dyn_single

range, dyn_range

Support 4 types ofprogrammable

full flag generation:

const: single programmable

threshold setting through

parameter;

dyn_single:

single programmable threshold

setting through

inputs(prog_full_thresh);

range:

 multiple programmable threshold

setting through parameters;

dyn_range:

multiple programmable thresh

setting through inputs ports

prog_full_thresh Int >=2,<=wn,

wn=(1<<wr_aw

-2*sh_bits)

Programmable full threshold

prog_empty_thresh Int >=2, <=rn

rn=(1<<rd_aw-2*sh_bits

)

Programmable empty threshold

prog_full_assert_const Int >=3,<=wn,

wn=(1<<wr_aw

-2*sh_bits)

Programmable upper threshold

value for the programmable full flag

prog_full_negate_const int >=2,<=wn,

wn=(1<<wr_aw

-3*sh_bits)

Programmable lower threshold

value for the programmable full

flag, must less than

prog_full_assert_const

prog_empty_assert_const Int >=2, <=rn

rn=(1<<rd_aw-3*sh_bits

)

Programmable lower threshold

value for the programmable empty

flag

http://www.hercules-micro.com/

 User Guide of FIFO

 http://www.hercules-micro.com 12

NOTE:

sh_bits = wr_dw > rd_dw ? log2(wr_dw/rd_dw) : log2(rd_dw/wr_dw)

prog_empty_negate_const Int >=3, <=rn

rn=(1<<rd_aw-2*sh_bits

)

Programmable upper threshold

value for the programmable empty

flag, must bigger than

prog_empty_asser_const

gen_prog_full Int 1, 0 1: generate programmable full flag；

0: do not generate programmable

full flag.

gen_prog_empty Int 1, 0 1: generate programmable empty

flag；

0: do not generate programmable

empty flag.

gen_almost_full Int 1, 0 1: generate almost full flag；

0: do not generate almost full flag.

gen_almost_empty Int 1, 0 1: generate almost empty flag；

0: do not generate almost empty

flag.

gen_wr_data_cnt Int 1, 0 1: generate write data count flag；

0: do not generate write data count

flag.

gen_rd_data_cnt Int 1, 0 1: generate read data count flag；

0: do not generate read data count

flag.

gen_wr_ack Int 1, 0 1: generate write acknowledge flag；

0: do not generate write

acknowledge flag.

gen_rd_ack Int 1, 0 1: generate read acknowledge flag；

0: do not generate read

acknowledge flag.

gen_wr_overflow Int 1, 0 1: generate write overflow flag;

0: do not generate write overflow

flag.

gen_rd_underflow int 1, 0 1: generate read underflow flag;

0: do not generate read underflow

flag.

fwft_en int 1,0 1: support FWFT function

0: not support FWFT function

http://www.hercules-micro.com/

 User Guide of FIFO

 http://www.hercules-micro.com 13

4 Software FIFO Usage and Control

This section describes the behavior of asynchronous and synchronous FIFO write/read and the associated

status flags.

When write enable is asserted and the FIFO is not full, data is added to the FIFO from the input bus and write

acknowledge is asserted. If the FIFO is continuously written without being read, it is filled with data. Write

operations are successful only when the FIFO is not full. When the FIFO is full, any writing request is ignored,

in the meanwhile the overflow flag is asserted and there is no change in the state of the FIFO.

When read enable signal is asserted and the FIFO is not empty, data is read from the FIFO on the output bus,

and the rd_ack flag is asserted. If the FIFO is continuously read without being written, the FIFO empties

eventually. Read operations are successful only if the FIFO is not empty. When the FIFO is empty, any read

operation request is ignored, meanwhile the underflow flag is asserted and there is no change in the state of

the FIFO.

4.1 FIFO Full/Empty generation

A FIFO is full when the pointers are equal again, that is, the write pointer has wrapped around and caught up

to the read pointer.

A FIFO is empty when the read and write pointers are both equal. This condition happens when both pointers

are reset to zero during a reset operation, or when the read pointer catches up to the write pointer, which

means the last data is read out from the FIFO.

Full Generation:

 Asynchronous FIFO full generation example

Figure 4-1 Asynchronous FIFO full generation

 Synchronous FIFO full generation example

Figure 4-2 Synchronous FIFO full generation

Empty Generation:

http://www.hercules-micro.com/

 User Guide of FIFO

 http://www.hercules-micro.com 14

 Asynchronous FIFO empty generation example

Figure 4-3 Asynchronous FIFO empty generation

 Synchronous FIFO empty generation example

Figure 4-4 Synchronous FIFO empty generation

4.2 Almost full/Almost empty generation

When only one more write operation can be performed before the FIFO is full, the almost full signal is

asserted. This flag is active high and synchronous to the write clock.

When only one more read operation can be performed before the FIFO is empty, the almost empty signal is

asserted. This flag is active high and synchronous to the read clock.

Almost full generation:

 Asynchronous FIFO almost full generation example

Figure 4-5 Asynchronous FIFO almost full generation

 Synchronous FIFO almost full generation example

Figure 4-6 Synchronous FIFO almost full generation

Almost empty generation:

http://www.hercules-micro.com/

 User Guide of FIFO

 http://www.hercules-micro.com 15

 Asynchronous FIFO almost empty generation example

Figure 4-7 Asynchronous FIFO almost empty generation

 Synchronous FIFO almost empty generation example

Figure 4-8 Synchronous FIFO almost empty generation

4.3 Programmable full/empty generation

4.3.1 Programmable Full

The FIFO Generator supports four ways to define the programmable full threshold:

 Single threshold constant (prog_full_type = “single”)

 Single threshold with dedicated input port (prog_full_typ = “dyn_single”)

 Assert and negate threshold constants (prog_full_type = “range”)

 Assert and negate thresholds with dedicated input ports (prog_full_type = “dyn_range”)

When the number of words in the FIFO is greater than or equal to the asserted threshold, the programmable

full signal is asserted. It is de-asserted when the number of words in the FIFO less than the negate threshold.

When the number of words in the FIFO is less than or equal to the programmable threshold, the

programmable empty signal is asserted. It is de-asserted when the number of words in the FIFO exceeds the

programmable threshold.

Programmable Full: Single Threshold

This option enables the user to set a single threshold value for the assertion and deassertion of prog_full.

When the number of entries in the FIFO is greater than or equal to the threshold value, prog_full is asserted

or else the flag is deasserted.

Two options are available to implement this threshold:

 Single threshold constant. User specifies the threshold value through the IP Wizard. Once the core is

generated, this value can only be changed by regenerating the core. This option consumes fewer

resources than the single threshold with dedicated input port.

 Single threshold with dedicated input port. User specifies the threshold value through an input port

(prog_full_thresh) on the core. This input can be changed dynamically, providing the user the flexibility

to change the programmable full threshold in-circuit without re-generating the core.

 Asynchronous FIFO programmable full generation example

http://www.hercules-micro.com/

 User Guide of FIFO

 http://www.hercules-micro.com 16

Figure 4-9 Asynchronous FIFO programmable full generation (prog_full_thresh=12)

 Synchronous FIFO programmable full generation example

Figure 4-10 Synchronous FIFO programmable full generation (prog_full_thresh=12)

Programmable Full: Assert and Negate Thresholds

This option enables the user to set separate values for the assertion and deassertion of prog_full. When the

number of entries in the FIFO is greater than or equal to the assert value, prog_full is asserted. When the

number of entries in the FIFO is less than the negate value, prog_full is deasserted.

Two options are available to implement these thresholds:

 Assert and negate threshold constants: User specifies the threshold values through the IP Wizard. Once

the core is generated, these values can only be changed by re-generating the core. This option consumes

fewer resources than the assert and negate thresholds with dedicated input ports.

 Assert and negate thresholds with dedicated input ports: User specifies the threshold values through

input ports on the core. These input ports can be changed dynamically, providing the user with the

flexibility to change the values of the programmable full assert (prog_full_assert) and negate

(prog_full_negate) thresholds in-circuit without re-generating the core.

 Asynchronous FIFO programmable full generation example

Figure 4-11 Asynchronous FIFO programmable full generation

(prog_full_assert=13, prog_full_negate=9)

 Synchronous FIFO programmable full generation example

http://www.hercules-micro.com/

 User Guide of FIFO

 http://www.hercules-micro.com 17

Figure 4-12 Synchronous FIFO programmable full generation

(prog_full_assert=13, prog_full_negate=9)

4.3.2 Programmable Empty

The FIFO Generator supports four ways to define the programmable empty thresholds:

 Single threshold constant (prog_empty_type = “single”)

 Single threshold with dedicated input port (prog_empty_type = “dyn_single”)

 Assert and negate threshold constants (prog_empty_type = “range”)

 Assert and negate thresholds with dedicated input ports (prog_empty_type = “dyn_range”)

Programmable Empty: Single Threshold

This option enables you to set a single threshold value for the assertion and deassertion of prog_empty.

When the number of entries in the FIFO is less than or equal to the threshold value, prog_empty is asserted

or else prog_empty is deasserted.

Two options are available to implement this threshold:

 Single threshold constant: User specifies the threshold value through the IP Wizard. Once the core is

generated, this value can only be changed by regenerating the core. This option consumes fewer

resources than the single threshold with dedicated input port.

 Single threshold with dedicated input port: User specifies the threshold value through an input port

(prog_empty_thresh) on the core. This input can be changed dynamically, providing the flexibility to

change the programmable empty threshold in-circuit without re-generating the core.

 Asynchronous FIFO programmable empty generation example

Figure 4-13 Asynchronous FIFO programmable empty generation (prog_empty_thresh=4)

 Synchronous FIFO programmable empty generation example

http://www.hercules-micro.com/

 User Guide of FIFO

 http://www.hercules-micro.com 18

Figure 4-14 Synchronous FIFO programmable empty generation (prog_empty_thresh=4)

Programmable Empty: Assert and Negate Thresholds

This option lets the user set separate values for the assertion and deassertion of prog_empty. When the

number of entries in the FIFO is less than or equal to the assert value, prog_empty is asserted. When the

number of entries in the FIFO is greater than the negate value, prog_empty is deasserted.

Two options are available to implement these thresholds.

 Assert and negate threshold constants. The threshold values are specified through the IP Wizard. Once

the core is generated, these values can only be changed by re-generating the core. This option consumes

fewer resources than the assert and negate thresholds with dedicated input ports.

 Assert and negate thresholds with dedicated input ports. The threshold values are specified through

input ports on the core. These input ports can be changed dynamically, providing the user the flexibility

to change the values of the programmable empty assert (prog_empty_assert) and negate

(prog_empty_negate) thresholds in-circuit without regenerating the core.

 Asynchronous FIFO programmable empty generation example

Figure 4-15 Asynchronous FIFO programmable empty generation

(prog_empty_assert=3, prog_empty_negate=5)

 Synchronous FIFO programmable empty generation example

Figure 4-16 Synchronous FIFO programmable empty generation

(prog_empty_assert=3, prog_empty_negate=5)

http://www.hercules-micro.com/

 User Guide of FIFO

 http://www.hercules-micro.com 19

4.3.3 Data count generation

Write data count (wr_data_cnt) pessimistically reports the number of words written into the FIFO. The count

is guaranteed to never under-report the number of words in the FIFO (although it may temporarily

over-report the number of words present) to ensure that the user never overflows the FIFO.

Read data count (rd_data_cnt) pessimistically reports the number of words available for reading. The count is

guaranteed to never over-report the number of words available in the FIFO (although it may temporarily

under-report the number of words available) to ensure that the user design never underflows the FIFO.

For write and read with different width, the wr_data_cnt represents the data with write data width that

stored in FIFO and rd_data_cnt represents the data with read data width that stored in FIFO.

 Asynchronous FIFO

Figure4-17 Asynchronous FIFO wr_data_cnt (prog_empty_thresh=4)

The wr_data_cnt signal shows how many data are stored in FIFO in write clock domain, as is shown in the

figure above

Figure4-18 Asynchronous FIFO rd_data_cnt (prog_empty_thresh=4)

The rd_data_cnt signal shows how many data are stored in FIFO in read clock domain, as is shown in the

figure above

 Synchronous FIFO

Figure4-19 Synchronous FIFO wr_data_cnt (prog_full_assert=13, prog_full_negate=9)

http://www.hercules-micro.com/

 User Guide of FIFO

 http://www.hercules-micro.com 20

Figure4-20 Synchronous FIFO rd_data_cnt (prog_full_assert=13, prog_full_negate=9)

4.3.4 Handshaking interface generation

Handshaking flags (read acknowledge, underflow, write acknowledge and overflow) are supported to provide

additional information regarding the status of the write and read operations.

The write acknowledge flag (wr_ack) is asserted at the completion of each successful write operation and

indicates that the data on the wdata port has been stored in the FIFO. This flag is synchronous to the write

clock (wclk).

The read acknowledge flag (rd_ack) is asserted at the completion of each successful read operation and

indicates that the data read out from FIFO. This flag is synchronous to the read clock (rclk).

The over_flow flag, this signal indicates that a write request (wen) during the prior clock cycle is rejected,

because the FIFO is full

The underflow flag, this signal indicates that the read request during the previous clock cycle was rejected

because the FIFO is empty

Figure4-21 Asynchronous FIFO write handshaking signal

Figure4-22 Asynchronous FIFO read handshaking signal

For synchronous FIFO, the handshaking interface is the same as asynchronous FIFO, except that synchronous

FIFO’s write and read are in the same clock domain.

http://www.hercules-micro.com/

 User Guide of FIFO

 http://www.hercules-micro.com 21

5 Hardware FIFO

5.1 Introduction

The hardware FIFO can support the features as below:

 Support data width up to 18 bits with depth up to 1K bits;

 Support both synchronous and asynchronous FIFO;

 Support wfull/rempty status flag;

 Optional synchronous clear inputs that can clear write and read pointer simultaneously ;

 Optional almost_full/almost_empty status flag generated according to the single threshold constant.

 Four optional handshake signals (wr_ack, rd_ack, overflow, underflow) provide feedback

(acknowledgment or rejection) in response to write and read requests in the prior clock cycle;

 Invalid read or write requests are rejected without affecting the FIFO state. When FIFO is full, data can’t

write to FIFO anymore, the write data will be omitted. When FIFO is empty, data can’t read out anymore;

Device Support:

HME-M7

5.2 Difference between SW FIFO and HW FIFO

Table 5-1 Compare SW FIFO with HW FIFO

Items FIFO SW FIFO HW FIFO

Size Depth up to: 219

Width up to: 288

Only support up to 18Kbits

Pins

almost

full/empty

Indicates there is only one more

data can be written to or read from

FIFO

Same as prog_full/empty in SW

FIFO

wr_cnt

rd_cnt

Indicates the number of data

stored in FIFO in write/read clock

domain

Do not support this function

clear signal wclr: clear write pointer

rclr: clear read pointer

fifo_clr: clear write and read

pointer simultaneously

Features Proggrammble

full/empty

threshold

Support 4 types:

Single threshold constant, Single

threshold with dedicated input

port,

Only one type:

Single threshold constant

http://www.hercules-micro.com/

 User Guide of FIFO

 http://www.hercules-micro.com 22

Assert and negate threshold

constants,

Assert and negate thresholds with

dedicated input ports

http://www.hercules-micro.com/

 User Guide of FIFO

 http://www.hercules-micro.com 23

6 AHB interface FIFO

See the document of "HME_AHB_interface_FIFO_user_guide_EN02.pdf" please click the file name.

http://www.hercules-micro.com/
CME_AHB_interface_FIFO_user_guide_EN02.pdf

 User Guide of FIFO

 http://www.hercules-micro.com 24

7 Resource usage

Table 7-1 Benchmarks, synchronous FIFO without optional features

DepthxWidth LUTs Regs EMBs

64x16 24 16 1

512x16 32 22 2

1024x16 52 25 4

2048x16 55 27 8

4096x16 57 29 16

Table 7-2 Benchmarks, synchronous FIFO with almost full/empty flag, multiple threshold and handshaking

DepthxWidth LUTs Regs EMBs

64x16 46 22 1

512x16 60 28 2

1024x16 81 31 4

2048x16 87 33 8

4096x16 91 35 16

Table 7-3 Benchmarks, asynchronous FIFO without optional features

DepthxWidth LUTs Regs EMBs

64x16 49 58 1

512x16 69 82 2

1024x16 93 91 4

2048x16 101 99 8

4096x16 110 107 16

Table 7-4 Benchmarks, asynchronous FIFO with almost full/empty flag, multiple threshold and handshaking

DepthxWidth LUTs Regs EMBs

64x16 79 64 1

512x16 113 88 2

1024x16 142 97 4

2048x16 161 105 8

4096x16 169 113 16

http://www.hercules-micro.com/

 User Guide of FIFO

 http://www.hercules-micro.com 25

8 Simulating your design

The Fuxi IP Wizard provide the source RTL for the FIFO, user can directly use this source code to do simulation.

Except the RTL, the simulation libraries for HME-M5 and HME_M7 are needed, you can find the lib from:

Fuxi install directory\data\lib\js_sim.v

Fuxi install directory\data\lib\m7s_sim.v

Fuxi install directory\data\lib\hr3_sim.v

When using Fuxi IP Wizard to generate FIFO core, a simulation directory under ip_core\fifo_v2 is generated.

You can find the source RTL under the ip_core\fifo\src directory, as is shown in Table9-1.

http://www.hercules-micro.com/

 User Guide of FIFO

 http://www.hercules-micro.com 26

9 Generated File Directory Structure

The FIFO IP wizard generated code includes source files (src) and related documentation(doc). The detailed

design directory structure is as below：

Project

src outputs ip_core

ip_top.v
(define by user)

fifo_ahb.v

simsrc doc example

fifo_v2_sim.v

fifo_ahb_tb_modelsi
m.f

m7s_sim.v

HME_AHB_interface_
FIFO_user_guide_

EN02.pdf

fifo_demo_arm_w_
arm_r

= directory

= source RTL code

= simulation related files

= documentation

fifo_v2

syn_arm_w_r_tb.v

syn_arm_w_r_tb.do

fifo_demo_arm_r_
fp_w

HME_FIFO_AHB_example_u
ser_guide_EN02.pdf

fifo_demo_arm_w_
fp_r

asyn_fifo.v

syn_fifo.v

HME_fifo_user_
guide_EN02.pdfM1M0_syn_fifo.v

M1M0_asyn_fifo.v

*.v
(simulation files)

sim_src

Figure 9-1 FIFO IP wizard generate files structure

Table 9-1 Design Directory structure

Directory Description

src\ Directory for project source code,

including IP wizard generate code.

ip_core\ The directory specially for all IPs

 \fifo_v2 Directory for FIFO IP

\doc\HME_AHB_interface_FIFO_user_guide_EN02.doc User guide for ahb interface FIFO IP

 \doc\HME_fifo_user_guide_EN02.doc User guide for FIFO IP

(no ahb interface)

http://www.hercules-micro.com/

 User Guide of FIFO

 http://www.hercules-micro.com 27

 \src IP Design RTL

fifo_ahb.v The src of ahb interface FIFO IP

asyn_fifo.v Asynchronous FIFO source code

syn_fifo.v Synchronous FIFO source code

M1M0_syn_fifo.v Synchronous FIFO source code for

device M0/M1

M1M0_asyn_fifo.v Asynchronous FIFO source code for

device M0/M1

 \sim

 \ syn_arm_w_r_tb.v Testbench of ahb interface FIFO(arm

write & arm read) IP

\ syn_arm_w_r_tb.do Do script for Modelsim simulation

(arm write & arm read)

 \fifo_ahb_tb_modelsim.f Modelsim simulation related files

 \fifo_v2_sim.v Other RTL design files with AHB

interface for simulation

 \sim_src

 *.v Other RTL design files for simulation

about AHB bus

 \example

 fifo_demo_arm_r_fp_w.zip AHB interface FIFO IP examples

 fifo_demo_arm_w_arm_r.zip

 fifo_demo_arm_w_fp_r.zip

HME_FIFO_AHB_example_user_guide_EN02.pdf The guide of AHB interface FIFO

http://www.hercules-micro.com/

 User Guide of FIFO

 http://www.hercules-micro.com 28

Revision History

Revision Date Comments

1.0 2018-03-26 Initial release

1.0 2018-03-26 Interface update，support more prog_full/empty generation, support

handshaking interfaces

Performance and resource usage update

1.1 2018-03-26 Change parameter type of prog_full/empty_type from string to int

Fix a bug of almost_empty generation of syn&asyn fifo

1.1 2018-03-26 Add AHB interface

2.0 2018-03-26 Support First Word Fall Through function

http://www.hercules-micro.com/

